\(\int \frac {(b \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [110]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 99 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {A b^2 x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {b^2 C x \sqrt {b \cos (c+d x)}}{2 \sqrt {\cos (c+d x)}}+\frac {b^2 C \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d} \]

[Out]

A*b^2*x*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)+1/2*b^2*C*x*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)+1/2*b^2*C*sin(
d*x+c)*cos(d*x+c)^(1/2)*(b*cos(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {17, 2715, 8} \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {A b^2 x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {b^2 C x \sqrt {b \cos (c+d x)}}{2 \sqrt {\cos (c+d x)}}+\frac {b^2 C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}{2 d} \]

[In]

Int[((b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(A*b^2*x*Sqrt[b*Cos[c + d*x]])/Sqrt[Cos[c + d*x]] + (b^2*C*x*Sqrt[b*Cos[c + d*x]])/(2*Sqrt[Cos[c + d*x]]) + (b
^2*C*Sqrt[Cos[c + d*x]]*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \int \left (A+C \cos ^2(c+d x)\right ) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {A b^2 x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {\left (b^2 C \sqrt {b \cos (c+d x)}\right ) \int \cos ^2(c+d x) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {A b^2 x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {b^2 C \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {\left (b^2 C \sqrt {b \cos (c+d x)}\right ) \int 1 \, dx}{2 \sqrt {\cos (c+d x)}} \\ & = \frac {A b^2 x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {b^2 C x \sqrt {b \cos (c+d x)}}{2 \sqrt {\cos (c+d x)}}+\frac {b^2 C \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.53 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {(b \cos (c+d x))^{5/2} (2 (2 A+C) (c+d x)+C \sin (2 (c+d x)))}{4 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[((b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(2*(2*A + C)*(c + d*x) + C*Sin[2*(c + d*x)]))/(4*d*Cos[c + d*x]^(5/2))

Maple [A] (verified)

Time = 8.51 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.58

method result size
default \(\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (C \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 A \left (d x +c \right )+C \left (d x +c \right )\right )}{2 d \sqrt {\cos \left (d x +c \right )}}\) \(57\)
risch \(\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, x \left (4 A +2 C \right )}{4 \sqrt {\cos \left (d x +c \right )}}+\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, C \sin \left (2 d x +2 c \right )}{4 \sqrt {\cos \left (d x +c \right )}\, d}\) \(69\)
parts \(\frac {A \,b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (d x +c \right )}{d \sqrt {\cos \left (d x +c \right )}}+\frac {C \,b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (\cos \left (d x +c \right ) \sin \left (d x +c \right )+d x +c \right )}{2 d \sqrt {\cos \left (d x +c \right )}}\) \(78\)

[In]

int((cos(d*x+c)*b)^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/2*b^2/d*(cos(d*x+c)*b)^(1/2)*(C*cos(d*x+c)*sin(d*x+c)+2*A*(d*x+c)+C*(d*x+c))/cos(d*x+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.73 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\left [\frac {2 \, \sqrt {b \cos \left (d x + c\right )} C b^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (2 \, A + C\right )} \sqrt {-b} b^{2} \log \left (2 \, b \cos \left (d x + c\right )^{2} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - b\right )}{4 \, d}, \frac {\sqrt {b \cos \left (d x + c\right )} C b^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (2 \, A + C\right )} b^{\frac {5}{2}} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {b} \cos \left (d x + c\right )^{\frac {3}{2}}}\right )}{2 \, d}\right ] \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(b*cos(d*x + c))*C*b^2*sqrt(cos(d*x + c))*sin(d*x + c) + (2*A + C)*sqrt(-b)*b^2*log(2*b*cos(d*x +
c)^2 - 2*sqrt(b*cos(d*x + c))*sqrt(-b)*sqrt(cos(d*x + c))*sin(d*x + c) - b))/d, 1/2*(sqrt(b*cos(d*x + c))*C*b^
2*sqrt(cos(d*x + c))*sin(d*x + c) + (2*A + C)*b^(5/2)*arctan(sqrt(b*cos(d*x + c))*sin(d*x + c)/(sqrt(b)*cos(d*
x + c)^(3/2))))/d]

Sympy [F(-1)]

Timed out. \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.60 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {8 \, A b^{\frac {5}{2}} \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right ) + {\left (2 \, {\left (d x + c\right )} b^{2} + b^{2} \sin \left (2 \, d x + 2 \, c\right )\right )} C \sqrt {b}}{4 \, d} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/4*(8*A*b^(5/2)*arctan(sin(d*x + c)/(cos(d*x + c) + 1)) + (2*(d*x + c)*b^2 + b^2*sin(2*d*x + 2*c))*C*sqrt(b))
/d

Giac [F]

\[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(5/2)/cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 1.13 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.48 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {b^2\,\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (C\,\sin \left (2\,c+2\,d\,x\right )+4\,A\,d\,x+2\,C\,d\,x\right )}{4\,d\,\sqrt {\cos \left (c+d\,x\right )}} \]

[In]

int(((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(5/2))/cos(c + d*x)^(5/2),x)

[Out]

(b^2*(b*cos(c + d*x))^(1/2)*(C*sin(2*c + 2*d*x) + 4*A*d*x + 2*C*d*x))/(4*d*cos(c + d*x)^(1/2))